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Abstract

Motivation: In the field of biology and medicine, the interpretability and accuracy are both important
when designing predictive models. The interpretability of many machine learning models such as neural
networks is still a challenge. Recently, many researchers utilized prior information such as biological
pathways to develop bioinformatics methods based on neural networks, so that the prior information can
provide some insights and interpretability for the models. However, the prior biological knowledge may be
incomplete and there still exists some unknown information to be explored.
Results: We proposed a novel method, named PathExpSurv, to gain an insight into the black-box
model of neural network for cancer survival analysis. We demonstrated that PathExpSurv could not only
incorporate the known prior information into the model, but also explore the unknown possible expansion
to the existing pathways. We performed downstream analyses based on the expanded pathways and
successfully identified some key genes associated with the diseases and original pathways.
Availability: Python source code of PathExpSurv is freely available at
https://github.com/WuLab/PathExpSurv.
Contact: lywu@amss.ac.cn
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
When developing a predictive model in the area of biology and medicine, it
is significant to balance the trade-off between accuracy and interpretability.
Simple models like linear regression usually have high interpretability but
don’t perform well, whereas the complex models based on deep learning
can achieve good performance but it is hard to explain the black-box inside
these models.

There are many different kinds of predictive tasks which can be roughly
categorized into classification and regression task. In this paper, we focus
on a special regression task, the survival regression, which is developed
for dealing with censored data. Survival models are applied to perform
time-to-event analysis in order to understand the relationships between

the patients’ covariates and the risk of the event. The Cox proportional
hazards model (CPH) (Cox, 1972), a semi-parametric regression model,
was widely used in survival analysis. This model assumes that the log-risk
of failure is a linear combination of the patient’s features. Although linear
model has good interpretability, it might be too simplistic to just assume
that the log-risk function is linear.

With the advent of machine learning, biomedical researchers were able
to fit survival data with more sophisticated nonlinear log-risk functions.
Faraggi and Simon (1995) firstly incorporated the feed-forward neural
network into Cox proportional hazards model (CPH), but this model
with only a single hidden layer hadn’t showed great improvements
beyond the CPH. DeepSurv (Katzman et al., 2018) was an addition to
Simon-Farragi’s network and configurable with multiple hidden layers. It
employed a more complex deep neural network to model the relationships
between the observed features and the patients’ risk of failure and showed

© The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

.license
CC-BY-NC-ND 4.0 Internationalpeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a

The copyright holder for this preprint (which was not certified bythis version posted November 9, 2022. ; https://doi.org/10.1101/2022.11.08.515625doi: bioRxiv preprint 

lywu@amss.ac.cn
https://doi.org/10.1101/2022.11.08.515625
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


i
i

“PathExpSurv” — 2022/11/8 — 21:45 — page 2 — #2 i
i

i
i

i
i

2 Hou et al.

improvements on the CPH when modeling the non-linear data. These
neural network-based methods have high predictive performance, but they
only leverage the fully connected neural networks, which are arbitrarily
over-parameterized and lack of interpretability.

In order to design a biologically informed and sparse neural network,
DeepOmix (Zhao et al., 2021) utilized signaling pathways as the functional
modules based on KEGG and Reactome databases to construct pathway-
associated sparse network. Each node encoded some biological entity and
each edge represented a known relationship between the corresponding
entities. However, this model only considered the known and fixed
functional modules in databases to design a sparse network, which might
leave out some important factors. In fact, despite painstaking and manual
curation, signaling pathways stored in databases still remained incomplete
(Ritz et al., 2016).

Therefore, it is necessary to make an exploration on the unknown
space out of the prior information and identify some significant genes
which may complement the original functional modules. In this paper, we
presented PathExpSurv, a novel survival analysis method by exploiting
and expanding the existing pathways. We firstly incorporated prior
biological knowledge of signaling pathways into the neural network for
survival analysis. In order to explore the possible unknown pathways with
better performance, we further added the genes beyond the databases
into the neural network pre-trained using the existing pathways, and
continued to train a regularized survival analysis model, with a L1

penalty that guarantees the sparse structure in the expanded pathways.
By simultaneously exploiting the existing pathways and exploring the
unknown pathways, PathExpSurv can gain an insight into the black-
box model of neural network for survival analysis. We performed some
downstream analyses based on the expanded pathways and successfully
identified some key genes associated with the diseases and original
pathways.

2 Methods

2.1 Basic Architecture

Suppose G is the number of genes, and N is the number of samples
(patients). PathExpSurv uses a biologically informed neural network
fW(x) to predict the effects of a patient’s covariates on their hazard rate,
with the input of gene expressionx ∈ R1×G and the learnable weightsW.
Our main objective is to optimize the mean negative log partial likelihood:

l(W) = −
N∑
i=1

δi

fW(xi)− log

 ∑
j:Tj≥Ti

exp (fW(xj))


(1)

where δi ∈ {0, 1} is the event indicator of i-th sample, xi ∈ R1×G is
the feature vector, and Ti ∈ R is the event time.

The basic architecture of neural network fW(x) consists of 3 layers
(Fig. 1a). The first layer is gene layer, the second layer is pathway layer
and the third layer is the output layer. The nodes of first and second layers
encode the genes and pathways respectively, and each edge represents the
relationship between a gene and a pathway. The connections between the
corresponding entities follow the pathway database such as KEGG and
are encoded by a mask matrix M. We assume that the genes belonging
to the same pathway have similar functions, so we constrain the weight
W1 between the gene and pathway layer to be non-negative. The output
of neural network is calculated as:

fW(x,M) = σ (σ (x · [W1 ⊙M]) ·W2)

where ⊙ is the element-wise multiplication of two matrices, x ∈
R1×G,W1 ∈ RG×P

+ ,M ∈ {0, 1}G×P ,W2 ∈ RP×1, σ = tanh,
and P is the number of pathways explored in the model.

2.2 Two-Phase Training Scheme

We proposed a novel optimization scheme consisting 2 phases (Fig. 1a):
pre-training phase and training phase, in order to improve the performance
of neural network by expanding the prior pathways.

During the pre-training phase, we utilized the prior pathways from the
KEGG database to pre-train the model. We added a standard deviation
term to the loss function due to the assumption that the genes in the
prior functional modules are almost equally important. Then the objective
function of pre-train phase became:

l1(W) =

−
n∑

i=1

δi

fW (xi,M)− log

 ∑
j:Tj≥Ti

exp (fW (xj ,M))


+ λ Std (W1 ⊙M)

where M was the prior pathway mask matrix obtained from the KEGG
database.

During the training phase, we changed the connections between the
gene layer and the pathway layer to fully connected, and added a L1

regularization term in order to select a few important genes from the genes
outside the prior pathways. That is, we optimized the following loss:

l2(W) =

−
n∑

i=1

δi

fW (xi,E)− log

 ∑
j:Tj≥Ti

exp (fW (xj ,E))


+ µ ∥W1 ⊙ (1−M)∥1

where E ∈ {1}G×P is the matrix of which the elements are all 1.

2.3 Evaluation Metric

When performing the evaluation of survival analysis, we need to consider
the censored data. The concordance index (C-index) (Uno et al., 2011)
is the most widely used evaluation metric in survival analysis. C-index is
defined as:

C-index =

∑
i,j 1Tj<Ti

· 1r(xj)>r(xi) · δj∑
i,j 1Tj<Ti

· δj
(2)

C-index expresses the proportion of concordant pairs in the dataset which
estimates the probability that, for a random pair of individuals, the ordering
of the predicted hazard risk of the two individuals is concordant with that
of their true survival time.

2.4 Pathway Expansion

In order to identify the reliable genes complement to the prior pathways,
we performed the following procedure as shown in Fig. 1b. Firstly, we
randomly permuted the dataset and selected 90% samples from the dataset
each time to train the PathExpSurv model. In this way, we repeated 100
times and obtained 100 different weight matrices between the gene layer
and the pathway layer, W(k)

1 , k = 1, ..., 100. Then we calculated the
corresponding occurrence matrix as follows:

O(k)(i, j) =

1, W
(k)
1 (i, j) > 0

0, W
(k)
1 (i, j) = 0

where k = 1, ..., 100, i = 1, ..., G, j = 1, ..., P.
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Fig. 1. (a) Schematic overview of PathExpSurv. The basic architecture of the neural network consists 3 layers (gene layer, pathway layer and output layer). The connection between the gene
layer and the pathway layer is determined by the pathway mask matrix, in which number 1 (black) means a non-penalized link representing a fixed relationship between gene and pathway
in prior information, number 1 (grey) means a penalized link representing a possible relationship to be explored, and number 0 (white) means no link. The training scheme of PathExpSurv
includes two phases, namely pre-training phase and training phase. In the pre-training phase, the prior pathway mask (M) is used to pre-train the model to achieve a relatively high and
stable performance. In the training phase, a specific fully connected mask (E) with prior links and L1-penalized non-prior links is used to train the model to explore the unknown space
and obtain the expanded pathways. (b) Pipeline of pathway expansion. We first randomly chose 90% samples from the dataset to train the PathExpSurv model, and repeated 100 times to
obtain the weight matrices between the gene layer and the pathway layer W(k)

1 (k = 1, ..., 100). Then we transformed these matrices into binary matrices O(k) (k = 1, ..., 100),
and calculated the occurrence probability matrix S based on these binary matrices. Finally we obtained the expanded pathways matrix R by filtering out the gene-pathway pairs with small
occurrence probabilities.

Secondly, we defined the occurrence probability of i-th gene in the
j-th pathway as:

S(i, j) =

∑100
k=1 O

(k)(i, j)

100

Finally, we sorted all the values in the occurrence probability matrix
S from biggest to smallest, and denoted the n-th biggest value as pn.
We extracted the top αK genes with highest occurrence probabilities to
expand the prior pathways, where α is the parameter to control the size
of expanded pathways and K is the total number of genes in the original
pathways. The expanded pathways can be represented by the following
incidence matrix:

R(i, j) =


1, S(i, j) ≥ p⌊(1+α)K+ 1

2
⌋

0, S(i, j) < p⌊(1+α)K+ 1
2
⌋

3 Results

3.1 Data Acquisition and Experimental Settings

To conduct computational experiments, we obtained 3 different survival
datasets from UCSC Xena: (1) Breast Cancer Dataset (BRCA), (2) Lower
Grade Glioma Dataset (LGG) and (3) Thyroid Cancer Dataset (THCA).
For each cancer, we took the signaling pathways associated with the
corresponding disease from KEGG DISEASE Database as the source of
prior pathways, i.e. the functional modules. We only used gene expression
data as the feature and the total number of genes in the original datasets is
60489. We did some preprocessing on the gene expression data. First, we
transformed the read counts through log2(x + 1). Second, we selected
the top variable genes of which the standard deviations among the patients

were larger than 1. In this way, there were only 2005 (BRCA), 1061
(THCA) and 1126 (LGG) genes left. Third, we normalized the data into
a standard normal distribution in order to overcome some problems like
gradient vanishing in the neural network models. The detail information
of cancer datasets and prior pathways were summarized in supplementary
Table S1 and S2.

Ten-fold cross-validation was used in the two-phase training. That is,
we randomly divided the samples into training set and the testing set with
the ratio of 9:1. We calculated the objective function, i.e., the loss function
in the training set, and simultaneously computed the evaluation metric,
i.e., C-index, to monitor the performance of models in both the training set
and the testing set, as shown in Fig. 2c. The penalty weight λ = 1 in the
pre-training phase and µ = 1 in the training phase. We adopted the Adam
optimizer to train our model, in which the learning rate was set to 0.05, the
number of epochs was 200, and the full batch was used. The parameter of
pathway expansion α is set to 0.2 in the study.

3.2 Performance of Survival Analysis

We first compared the performance of PathExpSurv to two baseline
models: Prior Net, Fully-connected Net. The Prior Net model only used
the neural network derived from the prior pathways, and was trained
using the same loss with standard deviation penalty as the pre-training
phase of PathExpSurv. The Fully-connected Net model only used the fully
connected neural network, and was trained using the same loss with the
L1 penalty as the training phase of PathExpSurv. For fair comparison,
the number of epochs of the training process was set to 200 for both
Prior Net and Fully-connected Net. The training scheme of PathExpSurv
can be regarded as a mixture of two baseline models, which includes
100 epochs pre-training with Prior Net and another 100 epochs training
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Fig. 2. (a) Performance comparison on Prior Net, Fully-connected Net and PathExpSurv. Generally, the Fully-connected Net and PathExpSurv outperformed the Prior Net. On the THCA
dataset, PathExpSurv even showed better result than the Fully-connected Net which had more learnable parameters. (b) Example of training curves of the two-phase training. The loss and
C-index showed significant improvement in the training phase. (c) GSEA p-values of the ranked genes list for each pathway. The GSEA p-values of PathExpSurv are significantly smaller
than those of Fully-connected Net, indicating PathExpSurv has the ability to obtain meaningful expanded pathways and the results is more interpretable. (d) Performance comparison on
several methods of cancer survival analysis. The C-index results of 4 methods (Cox regression, DeepSurv, DeepOmix and PathExpSurv) are shown, and PathExpSurv had best performance
among these methods.

with Fully-connected Net. We performed 10-fold cross validation and
the results were showed in Fig. 2a. As expected, the Fully-connected
Net and PathExpSurv outperformed the Prior Net. On the THCA dataset,
PathExpSurv even showed better result than the Fully-connected Net which
had more learnable parameters.

We further investigated and compared the interpretability of
PathExpSurv with the Fully-connected Net. We extracted the ranked gene
list for each pathway from the weight matrix W1, and performed Gene
Set Enrichment Analysis (GSEA) to test whether the ranked gene list
is closely associated with some functional term. The p-values of the top
enriched term for each pathway were shown in Fig. 2b. The GSEA p-values
of PathExpSurv were significantly smaller than those of Fully-connected
Net, indicating that PathExpSurv had the tendency to discover some genes
which were closely related with each other and was more explainable than
Fully-connected Net. Together with the results in Fig. 2a, we can conclude
that the Prior Net has good interpretability but its performance might be
limited, while the Fully-connected Net has higher performance but its

interpretability might be poor. PathExpSurv could balance the performance
and the interpretability well.

For accurately evaluating the roles of pre-training phase and training
phase, we performed two-phase training scheme for 100 random
experiments and computed the means and standard deviations of the
results. Table 1 displayed the results of these two phases. Fig. 2c showed
the training curve on LGG, and the training curves of other datasets were
shown in supplementary Fig. S1. We found that the optimal C-indices
of training phase were mostly better than those of pre-training phase,
which meant that the training of pre-training phase learned more useful
information beyond the prior pathway modules.

Finally, in order to evaluate the performance of PathExpSurv using
the state-of-the-art methods, we performed 10-fold cross validation and
compared the final C-index values in the testing set for each method. The
performance of PathExpSurv was compared with three typical survival
analysis methods: the Cox proportional hazards model (Cox, 1972),
DeepSurv (Katzman et al., 2018), and DeepOmix (Zhao et al., 2021).
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Table 1. Means and standard deviations of C-index in pre-training and
training phase. The best C-index in pre-training phase and training
phase is marked in bold.

Dataset Samples Pre-training Phase Training Phase

BRCA
Training set 0.93660 ± 0.00425 0.95611 ± 0.00385
Testing set 0.92812 ± 0.02134 0.93020 ± 0.01934

THCA
Training set 0.98640 ± 0.00315 0.98880 ± 0.00303
Testing set 0.98481 ± 0.03253 0.98994 ± 0.01414

LGG
Training set 0.90174 ± 0.01049 0.93691 ± 0.00783
Testing set 0.88602 ± 0.03614 0.88339 ± 0.03782

As shown in Fig. 2d, we found that PathExpSurv had best performance
among these methods. It is worthy to note that, the poor performance of
DeepSurv is partially attributed to the over-fitting in the training dataset,
while the prior information utilized in PathExpSurv and DeepOmix can
help them to avoid the over-fitting.

3.3 Pathway Expansion

Applying the pathway expansion procedure, we identified the supplement
genes of each prior pathway for each dataset, as shown in Table 2. In
each disease dataset, the number of supplement genes is 20% of the
total size of the original pathways. The occurrence probabilities of these
supplement genes were exhibited in Fig. 3a, most of which are larger than
0.6, indicating these genes can be reliably identified. On the one hand, these
supplement genes are significantly related to the corresponding pathway,
as validated by the enrichment analysis and the recoverability testing in
this section. On the other hand, these supplement genes are also closely
associated with the corresponding disease, which will be demonstrated in
next section.

We performed Gene Ontology (GO) term enrichment analysis
on the supplement genes of each pathway, so as to discover the
relationships between original pathway and expanded pathway. As shown
in supplementary Fig. S3 and Table S5, the supplement genes of ERK
signaling pathway for BRCA are enriched in glycerolipid biosynthetic
process (p = 0.000720304) and glycerolipid metabolic process (p =

0.002490982), which are closely related to ERK signaling (Kim et al.,
2020). The supplement genes of NOTCH signaling pathway for BRCA
are enriched in positive regulation of tumor necrosis factor production
(p = 0.003496794) and positive regulation of tumor necrosis factor
superfamily cytokine production (p = 0.003496794), as shown in Fig.
3b and supplementary Table S6. Fernandez et al. (2008) showed that
tumor necrosis factor-α modulate NOTCH signaling in the bone marrow
microenvironment during inflammation. The supplement genes of WNT
signaling pathway for THCA are enriched in bone morphogenesis (p =

0.00252103) and skeletal system morphogenesis (p = 0.005187936), as
shown in Fig. 3c and supplementary Table S7. WNT signaling activates
bone morphogenetic protein 2 expression (Zhang et al., 2013).

We also conduct a simulation experiment, named recoverability testing,
to test whether PathExpSurv could recover the meaningful genes closely
related to the prior pathway. We adopted the leave-one-out cross-validation
strategy. Each time we removed one gene from the prior pathway and
applied PathExpSurv 100 times to see how many times the leave-one-
out gene can be recovered. The recovering probabilities of leave-one-out
genes are compared with non-prior genes. The two-sample Kolmogorov-
Smirnov test reveals that there is a significant difference between the
recovering probability (rank) distributions of leave-one-out genes and non-
prior genes (Fig. 3d). The discrepancy of the two distributions showed that
the leave-one-out genes were more likely to be recovered, which might
indicate that PathExpSurv had the ability to identify the genes significantly
related to the corresponding pathway.

3.4 Disease Gene Discovery

The supplement genes are identified because they could improve the
performance of survival analysis, therefore it is expected that these
genes are closely associated with the corresponding disease. We searched
literatures and found some promising evidence. Therefore, these genes
could be further investigated and potentially used as the additional
important indicators for the disease.

For breast cancer, Wang et al. (2015) showed the close relationship
between the expression of BAMBI and the proliferation and migration of
breast cancer. The high expression of LINC01235 was associated with poor
prognosis of breast cancer patients (Li et al., 2021). IFIT2 was considered
a tumor suppressor in breast cancer (Zhang et al., 2020), as it had been
identified to inhibit cancer cell growth and migration, and promoted cell
apoptosis. Chi et al. (2019) demonstrated that small nucleolar RNA host
gene 5 (SNHG5) promoted breast cancer cell proliferation both in vitro
and in vivo. HLF regulates ferroptosis, development and chemoresistance
of triple-negative breast cancer by activating tumor cell-macrophage
crosstalk (Li et al., 2022). The expression of THBS1 in breast cancer
was associated with poor metastasis-free survival (Yee et al., 2009).
Knockdown of PEBP4 inhibited breast cancer cell proliferation in vitro
and tumor growth in vivo (Wang et al., 2017). The abnormal expression of
the IBSP gene was closely related to bone metastasis, increased malignant
risk and the poor prognosis of breast cancer (Wang et al., 2019). TFPI2
was down-regulated in breast cancer tissues and cell lines, and was
associated with poor prognosis of patients diagnosed with breast cancer
(Zhao et al., 2020). Zhou et al. (2022) found that increased CGA expression
was significantly associated with a poor prognosis in patients with breast
cancer. H2BC4 was overexpressed in breast cancer (Mohamed et al., 2021).
MSI1 was a negative prognostic indicator of breast cancer patient survival,
and was indicative of tumor cells with stem cell-like characteristics (Wang
et al., 2010).

For thyroid cancer, Hayase et al. (2015) demonstrated that STC1 was
highly expressed in thyroid tumor cell line and thyroid tumor tissues. The
expression level of APOD showed significant differences in the high- and
low-risk groups of differentiated thyroid cancer recurrence (Ruchong et al.,
2021). EEF1A2 was previously suggested as driver of tumor progression
and potential biomarker.

For lower grade glioma, ERBB3 showed marked underexpression in
most glioblastomas (Duhem-Tonnelle et al., 2010). GRB2 was largely
involved in multiple tumor malignancies (Ijaz et al., 2017). Yang et al.
(2019) indicated that MFAP4 could be used as novel biomarker for
developing therapies against human cancers.

We also performed the single-gene survival analysis to validate the
significance of the newly found genes. For one specific gene, we divided
the dataset into two groups: high expression group contained the top 50%
gene expression level and low expression group contained the others. Then
we ploted the Kaplan-Meier curves of the two groups, and identified
the most significantly different genes (p < 0.05). We displayed three
examples (LINC01235, STC1, H1-2) in Fig. 3e, while the complete
curves of all the significant genes were shown in supplementary Fig.
S4. For BRCA, we identified key genes: LINC01235, TTC36, H2BC4,
THBS1, AGPAT2, MMP12. For THCA, we got STC1, ND4L, APOD. For
LGG, we obtained H1-2, LYVE1, MFAP4, PCDHGB6. These genes were
differentially expressed between two groups and might contribute to the
performance improvement.

4 Conclusion and Discussion
In this paper, we proposed a novel survival analysis method, PathExpSurv,
which exploited a two-phase training scheme to pre-train the biologically
informed neural network and then train to make an exploration beyond
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Table 2. List of prior pathways and supplement genes.

Dataset Pathway Original Size Expanded Size Supplement Genes

BRCA

ERK signaling 18 22 AGPAT2, BAMBI, DGAT2, LINC01235
PI3K signaling 15 15 \
WNT signaling 46 46 \

NOTCH signaling 14 22
LOC110384692, C4A, HLF, SNHG5,

ASCL1, ORM2, IFIT2, THBS1
Nuclear receptor signaling 5 5 \

Cell cycle 6 17
IBSP, HEY1, TNN, H2BC4,

MTRNR2L1, CGA, TFPI2, TTYH1,
ASAH1, PEBP4, TTC36

Transcription 9 11 MMP12, MSI1

THCA
ERK signaling 12 12 \
WNT signaling 5 10 STC1, APOD, EEF1A2, ND4L, SCX
Transcription 11 11 \

LGG

ERK signaling 19 20 H1-2
PI3K signaling 13 13 \

Calcium signaling 15 15 \

Cell cycle 13 25
REM1, C1QL4, MTND4P12, GRB2,

RNU4-2, LYVE1, TMEM132E, PCDHB2,
ERBB3, H1-2, PCDHGB6, MFAP4

Transcription 9 10 H1-2

the prior database. We showed that the pathway expansion approach
can improve the performance of survival analysis while keep good
interpretability of the model. Besides the survival analysis, the new
method can also obtain valuable supplement genes which are significantly
associated with the prior pathways and the diseases.

Although PathExpSurv has achieved good performance and showed
great explainability, there still exist some directions to improve this
model. Firstly, the genes beyond the database were selected based
on the idea from LASSO in PathExpSurv, and we can also consider
some attribution methods such as DeepLIFT (Shrikumar et al., 2017),
DeepExplain (Ancona et al., 2017) and LIME (Ribeiro et al., 2016).
Secondly, PathExpSurv only employed a 3-layer neural network, and
more sophisticated architecture might further improve the performance
and interpretability. Finally, while the training scheme of PathExpSurv
consisted of two phases, we can design a more complex training way
to adjust the pathways step by step. Furthermore, PathExpSurv could be
regarded as a high-level framework which might be applied to all kinds of
prediction tasks.
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Fig. 3. (a) Occurrence probability of the supplement genes. (b) GO term enrichment analysis result of the supplement genes of NOTCH signaling pathway for BRCA, and (c) WNT signaling
pathway for THCA. (d) Comparison of the recovering probability (top) and rank (bottom) distributions of leave-one-out genes and non-prior genes. The p-values of Kolmogorov-Smirnov
test are shown in the figure. (e) Kaplan-Meier curves of single-gene survival analysis for three most significantly different genes (p < 0.05).
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